일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- java
- test
- jsp 파일 설정
- Gmarket
- 방식으로 텍스트
- 지마켓
- 幼稚园杀手(유치원킬러)
- word2vec
- spring MVC(모델2)방식
- lda
- 자바
- pytorch
- 네이버뉴스
- 이력서
- Python
- mysql
- 토픽추출
- 과학백과사전
- 코사인 유사도
- 게시판 만들기
- oracle
- r
- tomoto
- db
- 파이썬
- Topics
- (깃)git bash
- 크롤링
- Websocket
- RESFUL
- Today
- Total
목록pytorch (4)
무회blog
In [1]: import torch from transformers import BertForSequenceClassification model = BertForSequenceClassification.from_pretrained('bert-base-uncased') model.train() Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls...
In [4]: ## BertForMaskedLM from transformers import BertTokenizer, BertForMaskedLM import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForMaskedLM.from_pretrained('bert-base-uncased') input_ids = tokenizer("Hello, my dog is cute", return_tensors="pt")["input_ids"] # print(input_ids) outputs = model(input_ids, labels=input_ids) loss, prediction_scores = outputs..
In [6]: from __future__ import print_function import ipywidgets as widgets from transformers import pipeline print('success') success In [7]: nlp_sentence_classif = pipeline('sentiment-analysis') nlp_sentence_classif('Such a nice weather outside !') Out[7]: [{'label': 'POSITIVE', 'score': 0.9997655749320984}] In [12]: nlp_token_class = pipeline('ner') nlp_token_class('Hugging Face is a French co..
In [1]: import torch from transformers import AutoModel,AutoTokenizer, BertTokenizer print(torch.__version__) torch.set_grad_enabled(False) 1.6.0 Out[1]: In [2]: # 모델 저장하기 , Store the model we want to use MODEL_NAME = "bert-base-cased" # We need to create the model and tokenizer model = AutoModel.from_pretrained(MODEL_NAME) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) print('model : ',m..